spss教程:线性回归分析
本节内容主要介绍如何确定并建立线性回归方程。线型回归包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归,此处以多元线型为例进行介绍。
步骤1——前期数据准备处理
- 01
数据导入。以本案为例,单击“打开数据文档 ”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图:
- 02
数据标准化。由于本次数据的单位不尽相同,我们需要将数据标准化,在描述性统计上,勾选上“将标准化得分另存为变量”。
步骤2——回归分析
- 01
参数设置。 我们本次实验主要考察地区能源消费总额(因变量)与煤炭消费量、焦炭消费量、原油消费量、原煤产量、焦炭产量、原油产量之间的关系。以下的回归分析所涉及只包括以上几个变量,并使用标准化之后的数据。 参数设置中,单击菜单栏“ ”-->“ ”-->“ ”,将弹出如图所示的对话框,将通过选择因变量和自变量来构建线性回归模型。因变量:标准化能源消费总额;自变量:标准化煤炭消费量、标准化焦炭消费量、标准化原油消费量、标准化原煤产量、标准化焦炭产量、标准化原油产量。自变量方法选择:进入,个案标签使用地名,不使用权重最小二乘法回归分析—即WLS权重为空。
- 02
设置统计量的参数。选中估计可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta。选中模型拟合度复选框:模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。
- 03
在设置绘制选项的时候,我们选择绘制标准化残差图,其中的正态概率图是rankit图。同时还需要画出残差图,Y轴选择:ZRESID,X轴选择: ZPRED。
- 04
许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、预测值等做进一步的分析,“保存”按钮就是用来存储中间结果的。可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。本次实验暂时不保存任何项。
- 05
设置回归分析的一些选项,有:步进方法标准单选钮组:设置纳入和排除标准,可按P值或F值来设置。在等式中包含常量复选框:用于决定是否在模型中包括常数项,默认选中。
步骤3——结果输出与分析
- 01
在以上选项设置完毕之后点击确定,SPSS将输出一系列的回归分析结果。我们来逐一贴出和分析,并根据它得到最后的回归方程以及验证回归模型。 模型汇总结果:
- 02
回归方程的系数。 根据这些系数我们能够得到完整的多元回归方程。观测以下的回归值,都是具有统计学意义的。因而,得到的多元线性回归方程:Y=0.008+1.061x1+0.087 x2+0.157 x3-0.365 x4-0.105 x5-0.017x6 (x1为煤炭消费量,x2为焦炭消费量,x3为原油消费量,x4为原煤产量,x5为原炭产量,x6为原油产量,Y是能源消费总量) 结论:能量消费总量由主要与煤炭消费总量所影响,成正相关;与原煤产量成一定的反比。
- 03
模型适合性检验。主要是残差分析。残差图是散点图,可以看出各散点随机分布在e=0为中心的横带中,证明了该模型是适合的。同时我们也发现了两个异常点,就是广东省和四川省,这种离群点是值得进一步研究的。